
تعداد نشریات | 54 |
تعداد شمارهها | 2,408 |
تعداد مقالات | 34,617 |
تعداد مشاهده مقاله | 13,341,422 |
تعداد دریافت فایل اصل مقاله | 5,871,559 |
Examining the Theorization Potential of Chat GPT-4 in Cultural Turn Theories of Translation Studies: A Focus on Qur’ānic Cultural Elements | ||
International Journal of Textual and Translation Analysis in Islamic Studies | ||
مقاله 3، دوره 2، شماره 1 - شماره پیاپی 5، فروردین 2024، صفحه 42-68 اصل مقاله (490.53 K) | ||
نوع مقاله: Original Research | ||
شناسه دیجیتال (DOI): 10.22081/ttais.2024.69961.1034 | ||
نویسندگان | ||
Ebrahim Davoudi Sharifabad* 1؛ Mahsamaneh Abolhasani2؛ Mohammad Yazdani2 | ||
1Department of English Language, Baqir Al-Olum University, Qom, Iran | ||
2Department of English Language, Imam Reza International University, Mashhad, Iran | ||
تاریخ دریافت: 09 مهر 1402، تاریخ بازنگری: 12 آبان 1402، تاریخ پذیرش: 04 دی 1402 | ||
چکیده | ||
The extensive training data of ChatGPT has facilitated theorizing in the field of Translation Studies, particularly during the cultural turn. Following this theorizing, a standardization framework was proposed. This study employed a qualitative and interdisciplinary approach, utilizing a descriptive method to interpret the data. The validated questions were based on the works of theorists associated with the cultural turn. Two scholars participated in structured and semi-structured interviews, employing a three-point Likert scale to capture their opinions on the proposed theory. Data analysis focused on the accuracy of ChatGPT-4’s responses in relation to the scholars’ opinions and references. The findings associated with the Likert scale were linked to task-oriented benchmarks, including factual/contextual understanding, coherence, and resolution of ambiguity. The results indicated a 29.3% weakness in ChatGPT-4’s data analysis. The resolution of ambiguity resulted in a total of neutral responses at 44.8%. Scholars unanimously endorsed the cultural interaction theory, demonstrating a 100% capacity for theorizing by ChatGPT-4. In terms of coherence and summarization, the data suggested a stronger correlation with prompt engineering. The potential for theorizing concerning existing theory was found to be 77.7%, while the standard of theorizing by ChatGPT-4 was assessed at 68.9%. Surah Al-Fatiha was selected to exemplify cultural translation according to CIT, illustrating the theory’s effectiveness in translating cultural-ideological texts. A comparison of ChatGPT-4’s translations with those of six Quranic translators underscored its synthesizing abilities, with the incorporation of cultural interaction theory into prompts significantly enhancing its translation skills. | ||
کلیدواژهها | ||
Chat GPT4؛ Cultural Turn؛ Standardization؛ Theorizing؛ The Holy Qur’ān | ||
مراجع | ||
As-Safi, A. B. (2011). Translation theories: Strategies and basic theoretical issues. Al Manhal.
Avisyah, G. F., Putra, I. J., & Hidayat, S. S. (2023). Open artificial intelligence analysis using Chat GPT integrated with Telegram bot. Journal ELTIKOM, 7(1), 60–66.
Bacharach, S. B. (1989). Organizational theories: Some criteria for evaluation. Academy of Management Review, 14(4), 496–515. https://doi.org/10.5465/amr.1989.4308374
Bassnett, S. (2002). Translation studies (3rd ed.). Routledge.
Chiesa-Estomba, C. M., Lechien, J. R., Vaira, L. A., Brunet, A., Cammaroto, G., Mayo-Yanez, M., & Saga-Gutierrez, C. (2023). Exploring the potential of Chat-GPT as a supportive tool for sial endoscopy clinical decision-making and patient information support. European Archives of Oto-Rhino-Laryngology, 280(7), 1–6. https://doi.org/10.1007/s00405-023-07810-6
Dahia, I., & Belbacha, M. (2024). Machine-learning-based English Qur’ānic translation: An evaluation of ChatGPT. International Journal of Linguistics, Literature and Translation, 7(8), 128–136. https://doi.org/10.32996/ijllt.2024.7.8.17
Dildorbekovna, T. F. (2022). General problems of translation theory. International Journal of Social Science & Interdisciplinary Research, 11(9), 164–166. https://doi.org/10.24200/ijssir.vol11iss09pp164-166
Dimitriu, R. (2015). The many contexts of translation (studies). Linguaculture, 6(1), 5–23.
Graham, J. F. (1981). Theory for translation. In J. F. Graham (Ed.), Translation spectrum: Essays in theory and practice (pp. 23–30). State University of New York Press.
Hassan Zadeh, M. M., Lashkarian, A., & Sadegh Zadeh, M. (2020). Translating the Holy Quran: A comparative analysis of Al-Fatiha verse from Arabic to English. Journal of Social Sciences and Humanities Research, 6(1), 1–8. https://doi.org/10.24200/jsshr.vol6iss01pp1-8
Jaakkola, E. (2020). Designing conceptual articles: Four approaches. AMS Review, 10(1), 18–26. https://doi.org/10.1007/s13162-020-00161-0
Johnson, D., Goodman, R., Patrinely, J., Stone, C., Zimmerman, E., Donald, R., Chang, S., Berkowitz, S., Finn, A., Jahangir, E., Scoville, E., Reese, T., Friedman, D., Bastarache, J., van der Heijden, Y., Wright, J., Carter, N., Choe, J., Chastain, C., ... & Wheless, L. (2023). Assessing the accuracy and reliability of AI-generated medical responses: An evaluation of the Chat-GPT model. Research Square [Preprint]. https://doi.org/10.21203/rs.3.rs-2566942/v1
Kalla, D., & Smith, N. (2023). Study and analysis of Chat GPT and its impact on different fields of study. International Journal of Innovative Science and Research Technology, 8(1), 3–8.
Lee, T. K. (2023). Artificial intelligence and post-humanist translation: Chat GPT versus the translator. Applied Linguistics Review. https://doi.org/10.1515/applirev-2023-0122
Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., & Ge, B. (2023). Summary of ChatGPT-related research and perspective towards the future of large language models. Meta-Radiology, 2(1), Article 100017. https://doi.org/10.1016/j.metrad.2023.100017
Munday, J., Pinto, S. R., & Blakesley, J. (2016). Introducing translation studies: Theories and applications. Routledge.
Ochoa, J. G. D., Mustafa, F. E., Weil, F., Wang, Y., Dima, C., Kama, K., & Knott, M. (2023). The aluminum standard: Using generative artificial intelligence tools to synthesize and annotate non-structured patient data. [Journal name and details missing].
Poola, I., & Božid, V. (2023). Guiding AI with human intuition for solving mathematical problems in Chat GPT. International Journal of Mathematical Research Applications, 11(7), 1–10. http://www.ijmra.us
Ray, P. P. (2023). Benchmarking, ethical alignment, and evaluation framework for conversational AI: Advancing responsible development of Chat GPT. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(3), Article 100136. https://doi.org/10.1016/j.bench.2023.100136
Reiss, K., Nord, C., & Vermeer, H. J. (2014). Towards a general theory of translational action: Skopos theory explained. Routledge.
Sohail, S. S., Farhat, F., Himeur, Y., Nadeem, M., Madsen, D. Ø., Singh, Y., & Mansoor, W. (2023). Decoding ChatGPT: A taxonomy of existing research, current challenges, and possible future directions. Journal of King Saud University-Computer and Information Sciences, 35(1), Article 101675. https://doi.org/10.1016/j.jksuci.2023.101675
Tecuci, G. (2024, June). Why artificial intelligence is not a threat to humanity but a huge opportunity. FMS.md. Retrieved from https://fms.md/sites/default/files/2024-06/
Tymoczko, M. (2013). Translation theory. In The encyclopedia of applied linguistics (Vol. 10, pp. 5928–5937). Wiley-Blackwell.
West, D. M., & Allen, J. R. (2018, April). How artificial intelligence is transforming the world. Brookings Institution. Retrieved from https://www.brookings.edu/articles/how-artificial-intelligence-is-transforming-the-world/ | ||
آمار تعداد مشاهده مقاله: 62 تعداد دریافت فایل اصل مقاله: 8 |